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This paper is devoted to the study of foundation e!ects on the dynamic
characteristics of rotor-bearing systems. The modelling and analysis of
rotor-bearing}foundation systems based on the "nite element method are
discussed. A substructure procedure which includes the foundation e!ects in the
motion equations and the application of the dynamic solver of a commercial
package is addressed. The design criteria of the foundation for rotating machinery
avoiding resonance and suppressing response have also been emphasized through
numerical examples.
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1. INTRODUCTION

High-speed and light-weight are two features of rotating machinery demanded in
modern applications. Thus, accurate predictions of critical speeds, whirl responses
and modal characteristics are necessary for safe operations. Typical rotor-bearing
system models cannot insure accurate solutions because the foundation e!ects are
ignored.

Various studies have incorporated foundation e!ects in a rotor-bearing system
analysis. Kirk and Gunter [1] analyzed the steady state and transient responses of
the Je!cott rotor for elastic bearings mounted on damped and #exible supports.
They disregarded the rotor #exibility and the disk gyroscopic e!ects in the
formulation of the governing equations of motion, and provided design charts for
both turned and o!-turn support conditions to minimize the foundation
characteristics of the rotor amplitude and force transmitted over a given speed
range. Smith [2] investigated the Je!cott rotor with internal damping to include
a massless, damped and #exible support system. Lund [3] and Gunter [4] showed
that damped and #exible supports may improve the stability of high-speed rotors.
Also, Lund and Sternlicht [5], Dworski [6], and Gunter [7] demonstrated that
a signi"cant reduction in the transmitted force could be achieved by the proper
design of a bearing support system. Pilkey et al. [8] presented an e$cient
two-stage procedure for optimizing suspension systems of rotors. From these
studies, the dynamic performance problems in association with the foundation
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e!ects on mass, damping, and sti!ness of the well-known Je!cott rotor
incorporating the bearing support systems could be found.

Gasch [9] dealt with the #exible rotating shaft of a large turbo-rotor by the "nite
element analysis. He introduced foundation dynamics into the rotor equations via
receptance matrices, which were obtained from modal testing and modal analysis.
Vance et al. [10] provided comparison results for computer predictions and
experimental measurements on a rotor-bearing test apparatus. They have modelled
the rotor-bearing system to include foundation impedance e!ects by using the
transfer matrix method. Stephenson and Rouch [11] have utilized the "nite element
method to analyze rotor-bearing}foundation systems. They provided a procedure
using modal analysis techniques, which could be applied in measuring frequency
response functions to include the dynamic e!ects of the foundation structure.

Many "nite element procedures developed for rotor-bearing systems have been
implemented toward generalizing and improving the formulation, such as by Ruhl
and Booker [12]. In this early investigation, the e!ects of rotary inertia, gyroscopic
moments, shear deformation, axial load, and internal damping have been neglected.
Nelson and McVaugh [13] have utilized the Rayleigh beam "nite element to
formulate the rotor-bearing systems by including the additional e!ects as
mentioned above. Zorzi and Nelson [14] in 1977 and 1980 [15] worked on the
generalization of a similar model by including internal damping and axial torque
respectively. Nelson [16] and Greenhill et al. [17] utilized Timoshenko beam shape
functions to establish the shaft element formulation. OG zguK ven and OG zkan [18]
further improved the shaft "nite element model by including the e!ect of internal
hysteric and viscous damping. There are many software packages available today
for analyzing whirl responses, and predicting stability and modal characteristics of
rotor-bearing systems [19, 20]. However, the packages are designed for particular
usage of rotor-bearing systems their use may be limited if the involved foundation is
very complex.

It is known that the foundation can have a signi"cant e!ect on the dynamics of
rotor-bearing systems. The mathematical model of foundation structure is
essentially utilized to update the motion equations of rotor-bearing}foundation
systems. This study shows how to apply a commonly used package to analyze the
dynamic characteristics of rotor-bearing}foundation systems. The analysis extends
the "nite element models to include large degree of freedom (d.o.f.) of the
rotor-bearing system and complex foundation structure. Also, a two-node element
provided by the package to model disk, bearing and suspension is emphasized. In
the numerical examples, the e!ects of both lumped-mass and continuous
foundations are evaluated.

2. FINITE ELEMENT MODELLING OF SUBSTRUCTURES

As shown in Figure 1, the overall system of a typical rotating machine may be
divided into "ve subsystems; namely, the shaft, the rotating disk, the bearing, the
foundation structure, and the suspension. Each subsystem is modelled in turn, and
then these subsystems are combined by using compatibility conditions along with
the common co-ordinates to give an overall system model.



Figure. 1. The model of rotor-bearing}foundation system.
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Other features such as coupling between two shafts in series, vibration isolator,
vibration absorber and control actuators for vibration suppression may eventually
be superimposed onto the overall system model. Since these are beyond the scope of
this paper, they are not to be considered here.

The rotor system is idealized as a system consisting of a large number of "nite
shaft elements of circular cross-section with rigid disks mounted at one end or both
the ends of some shaft elements. In addition to the shaft elements, this system has
bearings, i.e., the non-isotropic #uid "lm or isotropic rolling bearing type. The
structure beyond the bearing is the foundation that includes the bearing housing
and the machine support structure.

For a shaft element provided by the ANSYS library [21], the d.o.f. are de"ned by
MqN"(u

x
, u

y
, u

z
, h

x
, h

y
, h

z
)T. Each element is modelled by 12 d.o.f.s with two lateral

translations (u
x
, u

y
), one axial translation (u

z
), two bending rotations (h

x
, h

y
), and

one twisting rotation (h
z
) at each node. In the stationary frame of reference, the

equation of motion for the whole shaft which excludes all disks and bearings can be
written in a general form as

[Me]MqK N#([Ce]#X[Ge])MqR N#[Ke]MqN"X2MFe
u
N#MFe

g
N#MQbN#MQdN, (1)

where MFe
u
N is the vector of unbalance forces, MFe

g
N is the vector of unidirectional

load of shaft and MQdN, MQbN are the vectors of interactive forces at nodes of disk
locations and bearing locations respectively.

The disks without the length e!ect as shown in Figure 2 are modelled by
a two-node element including mass, rotary inertia, and gyroscopic moment. The
d.o.f. of this two-node element is the same as that of a shaft element. The governing
equation is expressed as follows:

[Md]MqK dN#X[Gd]MqR dN"X2MFd
u
N#MFd

g
N!MQe

d
N#MQg

d
N, (2)



Figure. 2. The two-node model of a disk.
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where MFd
u
N and MFd

g
N are the vectors of unbalance forces and unidirectional load

respectively, MQe
d
N is a vector of interaction forces and moments at the common

nodes of the disk and the shaft, MQg
d
N is a vector of inertia forces and inertia

moments of the disk relative to the ground. The details of disk model are shown in
Appendix A. In the equations expressed above, rotating symmetry is assumed for
the "nite shaft elements and the rigid disks.

Figure 3(a) and 3(b) show the simpli"ed models of a bearing on
a continuous-mass and #exible foundation and a suspension of the same
foundation respectively. Similarly, with the length e!ects of the bearing being
neglected, an eight-coe$cient model including direct and cross-e!ects of sti!ness
and damping properties may be used to model the bearings. In this model, the
interactive force acting at each bearing is obtained from

[Cb]MqR bN#[Kb]MqbN"!MQe
b
N#MQf

b
N, (3)

where MQf
b
N is the vector of interactive forces and moments at the common nodes of

bearings and foundation; MqbN includes the common nodes of shaft and bearing and
those of bearing and foundation.

Similarly, the interactive forces acting at each suspension are obtained by

[Cs]MqR sN#[Ks]MqsN"!MQf
s
N#MQg

s
N, (4)

where MQf
s
N and MQg

s
N are interactive forces at the common nodes of suspension and

foundation, and of suspension and ground respectively. The details of the bearing
model and the suspension model are also shown in Appendix A.



Figure. 3. The illustrations of force equilibrium of the bearing and suspension: (a) two-node model
of linear bearing; (b) two-node model of linear suspension.
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ANSYS is a common tool for "nite element analyses, whose basic codes allow the
rotating beam elements and the solid elements to model the shaft and the
foundation respectively. For a rotating beam element, the gyroscopic e!ect can be
taken into consideration. Also, the e!ects of rotary inertia, shear deformation, axial
load and internal damping have been included. However, this package like most
others does not set speci"c elements for modelling rotating disks, bearings and
suspensions.

In ANSYS, MATRIX 27 is available for modelling rotating disk, bearing
and suspensions. The geometry of this arbitrary element is unde"ned, but its
mechanism can be speci"ed by sti!ness, damping, or mass matrix. The matrix is
assumed to relate to two nodes, each with six d.o.f.s per node, translations in the
nodal x, y, and z directions and rotations about the nodal x-, y-, and z axis. Other
similar, but less general elements are the spring-damper element and the mass
element.

3. DECOMPOSITION AND SYNTHESIS OF SUBSTRUCTURES

Three steps are required for the analysis. In step 1, both the "nite element model
of a rotor-bearing system and the foundation structure are constructed and
meshed. In step 2, foundation matrices are introduced into the rotor-bearing
equations via the formulation of interactive forces between component nodes. In
step 3, standard codes are applied to calculate the characteristics of
rotor-bearing}foundation systems. Modi"cation in design procedures of the
foundation of a rotor-bearing system can be suggested by the results of dynamic
analyses.
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Assembling equations (1)} (3) gives the motion equation of a rotor-bearing
system as follows:

[M]MqK N#[C]MqR N#[K]MqN"X2MF
u
N#MF

g
N#MQf

b
N#MQg

d
N. (5)

Equation (5) can be separated into the sub-matrix form as
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where subscript &&a'' denotes all of the interior d.o.f. and free-end d.o.f. of the
rotor-bearing system, and subscript &&b'' denotes the common d.o.f. of the bearing
and the foundation.

Similarly, the motion equation of the foundation structure mounted on the
suspension can be expressed as
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where subscript &&c'' denotes the interior d.o.f. and free-surface d.o.f. of the
foundation. The motion equations of foundation are modelled by proper elements,
such as beam, plate, shell or solid elements, which are provided by ANSYS coding.
Asembling equations (6) and (7) gives
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where MFaN and MFcN are vectors of external loads applied at the rotor and at the
foundation respectively. Solver codes of ANSYS can be applied to determine
natural frequencies, mode shapes, critical speeds, stability thresholds, unbalance
responses of rotor-bearing}foundation models for the analysis of foundation
e!ects.
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4. MODE TRANSITIONS DUE TO INFLUENCES OF LUMPED-MASS
FOUNDATIONS

The Je!cott rotor shown in Figure 4, is the simplest model of a
rotor-bearing}foundation system. It is supported by discrete foundations at both
ends. The details of lumped-mass foundation modelling are shown in Appendix B.
This model has physical parameters as listed in Table 1 and is validated through
four cases of di!erent sti!ness coe$cients of suspension K

f
: 103, 105, 107 and

109 N/m.
Figure. 4. The model of rotor-bearing system mounted on lumped mass foundation: (a) system;
(b) two-node model of a lumped-type foundation.



TABLE 1

Physical parameters of the model in Figure 4

Bearings K
xx
"K

yy
"109 or 105 N/m, others"0

Disk md"0)4127 kg, Id"1)6076]10~4 kgm2, Jd"3)0187]10~4 kgm2
Shaft E"2]1011 N/m2, I"4)0489]10~10 m4, o"7850 kg/m3,

¸
1
"0)2 m, ¸

2
"0)3 m

Foundations m
f
"0)01 m

r
, 1 m

r
, 10 m

r
, 100 m

r
, (m

r
"0)6926 kg)

Suspensions K
xx
"K

yy
"109 or 105 N/m, others"0
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From modal analysis of the equations of the overall system, natural frequencies
of the "rst nine modes, u

1
, u

2
,2, u

9
in ascending order, can be obtained versus

m
f
/m

r
as shown in Figure 5. These results show that the natural frequencies of each

mode decrease as the foundation mass increases. In Figure 5, the variation of
natural frequencies can be separated into three parts. When the mass ratio of
foundation m

f
/m

r
is either su$ciently large or small, the natural frequencies change

slightly as m
f
/m

r
varies. While the foundation mass has a medium value, the

intensive transition of natural frequencies occurs as the value of m
f

varies a little.
After transition, the shape of a high order #exural mode of the rotor is in#uenced

by large m
f

and is thus transformed into a lower order #exural mode. As shown in
Figure 5(c), the value of m

f
/m

r
increases from 0)1 to 10, the natural frequencies of

u
3

to u
7

decrease to the frequencies of u
1

to u
5
, and the mode shapes are

transferred from u
n

to u
n~2

at the same time.
It should be noted that the transition of resonant modes occurs in spite of the

sti!ness coe$cients of suspension K
f
. Yet, the only di!erence is in the range of

m
f
/m

r
when the transition actually occurs. The transition occurs at large values of

m
f
/m

r
when suspensions are sti! or when K

f
is su$ciently large.

The shadow zone is used to indicate the allowable range of operating speed. The
ranges between any two adjacent modes are available for operation. When the
suspension is soft, the rotor is accelerated to pass through the "rst several
rigid-body modes rapidly and is rotated at a speed below to the critical speeds of
#exural modes of the rotor. Thus, the motion of foundation mass has no limit.

Conversely, when the suspension is hard, for example K
f
"107 to 109 N/m, the

range of m
f

where the resonant transition occurs is not available. For example,
when K

f
"107 N/m, a range of m

f
/m

r
from 1 to 40 must be avoided, and a value of

m
f
/m

r
greater than 100 as K

f
"109 N/m is also not recommened.

The sti!ness coe$cients of most bearings, for instance, the angular contact ball
bearings, the tapered roller bearings, the hybrid oil-"lm bearings and the big-size
hydrodynamic journal bearings, are between 108 and 109 N/m.

However, the sti!ness coe$cients of small-size oil-"lm bearings or hydrostatic
air bearings have values from 106 to 107 N/m, or smaller values. Thus, the analyses
for small coe$cients of bearing sti!ness have also been studied.

Similar to the phenomena of hard bearings shown in Figure 5, the natural
frequencies of the system (Figure 4) mounted on soft bearings (for example,
K

b
"105 N/m) decrease as the foundation mass increases, and the results are



Figure. 5. The natural frequencies versus the foundation mass and K
b
"109 N/m:

(a) K
f
"103 N/m; (b) K

f
"105 N/m; (c) K

f
"107 N/m; (d) K

f
"109 N/m.
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shown in Figure 6. However, the di!erence between them is that the soft bearings
have more modes than the hard bearings within the same speed range. Obviously,
the safe range of operation for a rotor mounted on soft bearings is smaller than that
of the one mounted on hard bearings.

Applying the similar analysis to the situation when K
b
"109 and 105 N/m, one

can get the natural frequencies of mode versus foundation sti!ness as shown in
Figures 7 and 8. In both "gures, the values of m

f
/m

r
are chosen as 100, 10, 1, 0)01.

The natural frequencies of each mode increase as K
f
increases. When K

f
is either

very large or very small, the natural frequencies of mode increase smoothly.
However, as long as the values of K

f
range are medium, violent transitions of the

natural frequencies occur as K
f

varies lightly.
The ranges between two adjacent modes are larger and the number of modes is

lower within a speed range as m
f

gets smaller. Also, the transition of natural
frequencies occurs at a smaller value of K

f
and the range of transition is narrower.

Thus, the smaller the foundation mass m
f

is, the larger the range of available K
f

is.
As shown in Figure 7, when the foundation mass m

f
is larger, the transition

occurs at larger values of bearing sti!ness. After transition, all the resonant modes



Figure. 6. The natural frequencies versus the foundation mass and K
b
"109 N/m: (a)

K
f
"103 N/m; (b) K

f
"105 N/m; (c) K

f
"107 N/m; (d) K

f
"109 N/m.
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veer to the modes of the rotor-bearing system that is simply supported by rigid
foundation.

In Figure 8, before the transitions, the "rst and second modes of the system are
coupled by the rigid-body motions of foundation and of rotor respectively. After
the transitions, the "rst and second modes veer to the coupled #exural mode of the
rotor and a rigid-body motion mode of the rotor. All #exural modes of the system
are coupled by a #exural mode of the rotor and a rigid-body motion mode of the
foundation before the transition, and they veer to #exural modes of rotor after the
transitions.

Figure 9 illustrates the transitions as mentioned above for the "rst three modes of
a one-disk rotor-bearing}foundation model, K

f
/K

b
"10~4 (before the transition)

and K
f
/K

b
"107 (after the transition), respectively. The bearing sti!ness of this

model is K
b
"109 N/m. In this "gure, the displacements of the rotor at both ends

are denoted by A
r1

and A
r2

respectively, the center displacement of the disk is
denoted by A , and the displacements of foundation at both ends are denoted by
r3



Figure. 7. The natural frequencies versus the suspension sti!ness and K
b
"109 N/m: (a)

m
f
/m

r
"100, (b) m

f
/m

r
"10, (c) m

f
/m

r
"1, (d) m

f
/m

r
"0)01.
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A
f1

and A
f2

respectively. The amplitude ratios of the displacements related to
A

r1
"1 for mode shapes are listed in Table 2.

5. COUPLING EFFECTS OF FLEXIBLE CONTINUOUS FOUNDATIONS

For the analysis of cross-coupling e!ects between two bearing support points,
a Je!cott rotor mounted on a beam-type foundation as shown in Figure 10 is taken
into consideration. The "nite element models of the foundation and the rotor are
combined by bearings which are modelled by a two-node element provided by the
ANSYS library. Two cases are determined: (1) "nite element matrices by ignoring
the cross-coupling term of the foundation and (2) complete "nite element matrices
of the foundation.

The physical parameters of this rotor-bearing}foundation system are listed in
Table 3. The beam is supported by suspensions at both ends and both suspension
points are located just below the two bearings. It is assumed that the bearing and



Figure. 8. The natural frequencies versus the suspension sti!ness and K
b
"105 N/m: (a)

m
f
/m

r
"100, (b) m

f
/m

r
"10, (c) m

f
/m

r
"1, (d) m

f
/m

r
"0)01.
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foundation are isotropic and symmetric around the shaft, and sti!ness coe$cients
are identical for both the vertical and horizontal directions.

The unbalance responses are shown in Figure 11 for the spin speed from 0 to
2000 Hz, where the ordinate is amplitude, logarithm to base 10, and the unit is meter.
The coupling e!ects of supported points of bearings is illustrated by the solid lines,
which is induced by the foundation #exibility. The dashed lines represent the results
without coupling e!ect by removing cross-coupling elements of sti!ness matrix.

When both bearing and suspension are soft, as shown in Figure 12, the
cross-coupling e!ect degrades the natural frequencies of resonant modes. If K

b
is

large and K
f

is small, the cross-coupling e!ect increases the number of modes
within an identical frequency range. In contrast, when both bearing and suspension
are hard, the cross-coupling e!ect is nil, as shown in Figure 13.

Also when only the sti!ness of the foundation is su$ciently large, the
cross-coupling is ine!ective, as shown in both Figures 11(a) and 12(a). For a 0)2 m
thick foundation, the analytical results of the foundation with cross-coupling or
ignoring element of cross-coupling are identical, while for the 0)02 or 0)002 m thick
foundations, the results are distinct.



Figure. 9. The "rst three modes for two suspension sti!ness. (a) K
f
/K

b
"10~4; (b) K

f
/K

b
"107.

TABLE 2

Mode shapes of both cases

K
f
/K

b
Elements of A

r1
A

r2
A

r3
A

f1
A

f2mode vector

1st mode 1 0)7549 0)9021 1 0)7551
10~4 2nd mode !1 1)3237 !0)0701 0)9996 1)3233

3rd mode !1 !0)7519 4)2918 !2)0457 1)5394

1st mode !1 !0)7546 5)7170 0 0
107 2nd mode !1 1)3821 0)1771 0 0

3rd mode 1 0)7099 !0)0829 0 0
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Figure. 10. Je!cott rotor mounted on a beam-type foundation.

Figure. 11. Harmonic responses for K
b
"K

f
"105 N/m, and D"(a) 0)2 m, (b) 0)02 m, (c)

0)002 m.
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6. INFLUENCES ON CAMPBELL DIAGRAM

The "rst eight resonant frequencies versus the spin speed of a rotor-
bearing}foundation system are shown in Figure 4. Table 1 is determined, whose
Campbell diagrams for various mass ratios (m

f
/m

r
) are shown in Figure 14. Due to



TABLE 3

Physical parameters of the model in Figure 10

Bearings K
xx
"K

yy
"109 or 105 N/m, others"0

Foundation E"2]1011 N/m2, I
x
"I

y
"I"0)04909D4 from 10~10}10~6 m4,

o"7850 kg/m3, ¸
1
"0, ¸

2
"0)5 m

Disk md"0)4127 kg, Id"1)6076]10~4 kgm2, Jd"3)0187]10~4 kgm2
Shaft E"2]1011 Pa, I"4)0489]10~10 m4, o"7850 kg/m3
Suspensions K

xx
"K

yy
"109 or 105 N/m, others"0

Figure. 12. Harmonic responses for K
b
"109 N/m, K

f
"105 N/m, and D"(a) 0)2 m, (b) 0)02 m,

(c) 0)002 m.
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the gyroscopic e!ects of rotating shafts and disks, each mode has both forward and
backward whirls. In this "gure, nF and nB denote the nth order modes of forward
and backward whirls respectively, and nM denotes the nth mode of independent
motion of the foundation. The natural frequencies of the foundation mode remain
constant while speed varies, since the gyroscopic e!ect is nil.

When the sti!ness coe$cients of bearing and suspension are all small, for
instance, where both K

b
and K

f
are 105 N/m, coupled motions of foundation and

rotor coexist in a single mode. When K
b

and K
f

are large, for instance,
K

b
"K

f
"109 N/m, only one motion of rotor or foundation exists in one mode.



Figure. 13. Harmonic responses for K
b
"K

f
"109 N/m, and D"(a) 0)2 m, (b) 0)02 m, (c) 0)002 m.

358 Y. KANG E¹ A¸.
For m
f
/m

r
"100, the "rst mode of foundation can be below 1100 Hz. While the

value of m
f

is small (for example, m
f
/m

r
"1 or 0)01), the frequency of fundamental

mode of foundation has a higher value.
For the same sti!ness coe$cient, the value of m

f
is less and the natural frequency

of identical mode is larger at zero speed. When spin speed increases, the frequencies
of forward modes rise rapidly and the frequencies of backward modes also degrade
rapidly.

For the same value of m
f
/m

r
, the number of modes in a frequency range

decrease as the values of K
b

and K
f

increase. For K
b
"K

f
"105 N/m, the

bifurcation of the even-order modes is greater and the bifurcation of the odd-order
modes is smaller. For K

b
"K

f
"109 N/m, the bifurcation of the "rst and second

modes are smaller; in contrast, the bifurcation of the other modes has a similar
degree.

7. EFFECTS ON CRITICAL SPEEDS AND HARMONIC RESPONSES

The same rotor-bearing}foundation system as shown in Figure 10 has
K

b
"109 N/m, K

f
"105 N/m, shaft radius 0)02 m and varying moment of area

from 10~10 to 10~6 m4 of beam-type foundation. The harmonic responses due to
rotating unbalance are determined and are shown in Figure 15. From these results,



Figure. 14. Campbell diagrams (a)} (c): K
f
"K

b
"105 N/m; (d)} (f ): K

f
"K

b
"109 N/m: **,

forward whirl (F); - - - - -, backward whirl (B); *}*, mode of foundation (M) ((a, d) m
f
/m

r
"100;

(b, c) m
f
/m

r
"1; (c, f ) m

f
/m

r
"0)01).
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the variation of critical speeds versus moment of area I is presented in Figure 16.
When moment of area I exceeds 10~8 m4, mass and sti!ness of foundation also
increase as I increases, and thus the increase in I reduces the critical speed slightly.
When I is smaller than 10~8 m4, the critical speed rises conspiciously as I increases
due to the dominant e!ect of the increase in sti!ness.

In Figure 16, 1 Hz below the "rst mode, 100 Hz in a frequency range between the
second and the third modes, and 200 Hz beyond the third mode range are selected.
These are considered in the determination of the harmonic responses for the disk
center of the rotor. The analytical results are shown in Figure 17.



Figure. 15. Harmonic responses of rotor-bearing}foundation system for K
b
"109 N/m,

K
f
"105 N/m in Figure 10: (a) I"10~10m4; (b) I"10~9 m4 ; (c) I"10~8 m4; (d) I"10~7 m4 ; (e)

I"10~6 m4.

Figure. 16. Critical speeds of a rotor-bearing system mounted on beam-type foundation with
K

b
"109 N/m, K

f
"105 N/m.
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Figure. 17. Harmonic responses at 1, 100, 200 Hz with K
b
"109 N/m, K

f
"105 N/m:*j*, spin

speed 200 Hz; *d*, spin speed 100 Hz; *m*, spin speed 1 Hz.
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The range of spin speed of the rotor can be designed according to the results of
Figure 16; furthermore, Figure 17 is useful for the design of moment of area I of the
foundation. When the moment of area I of the foundation is greater than 10~7 m4,
the harmonic responses cannot be suppressed by increasing I. However, the
foundation mass increases as moment of area I increases. This causes the critical
speeds of modes to decrease and the range of operating speed to narrow. Thus, from
this example, the optimal value of I determined is 10~7 m4.

The analytical results of critical speeds and the harmonic responses at 1, 100, 200,
400 Hz for hard foundation suspensions (for example K

f
"109 N/m) and hard

bearings (for example, K
b
"109 N/m) are shown in Figures 18 and 19 respectively.

For I"10~10 m4, the second, "fth, and seventh modes are referred to as the
decoupled modes of rotor. Also the critical speeds do not vary with moment of area
I since the foundation does not deform at these three modes. The fourth, sixth,
eighth, and ninth modes are referred to as the decoupled modes of foundation, and
the rotor is stationary without deformation. In addition, the "rst and third modes
are the coupled modes of rotor and foundation. Consequently, the critical speeds of
foundation modes increase as moment of area I increases.

Figure 19 represents the responses versus moment of area I at four spin speeds.
Since sti!ness coe$cients K

f
and K

b
are su$ciently large, all the responses remain

constant unless the resonance occurs as shown.
For foundation design, the choice of an appropriate moment of area I is

bene"cial for a wider range of two adjustment critical speeds. As shown in Figure
18, it is better to utilize a value of I which is greater than 10~18 m4 as the operating
speed is near 100 Hz. When the operating speed is near 200 Hz, the value of
I should preferably be less than 5]10~9 m4 or greater than 5]10~8 m4 and when



Figure. 18. Critical speeds of a rotor-bearing system mounted on beam-type foundation with
K

b
"K

f
"109 N/m.

Figure. 19. Harmonic responses for rotor-bearing system mounted on beam-type foundation with
K

b
"K

f
"109 N/m: *m*, spin speed 1 Hz; *r*, spin speed 200 Hz; *j*, spin speed 100 Hz;

*d*, spin speed 400 Hz.
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the operating speed is near 400 Hz, the optimal range of I is between 2]10~9 and
10~7 m4.

Figure 20 reveals the critical speeds versus moment of area I of the foundation,
when both the sti!ness coe$cients of bearing and suspension are soft. In this "gure,
K

f
"105 N/m"K

b
is assumed and mode shapes are illustrated on both ends of

each curve. The lowest three modes are coupled by rigid-body motions of rotor and



Figure. 20. Critical speeds of a rotor-bearing system mounted on beam-type foundation with
K

b
"K

f
"105 N/m.
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foundation. Speci"cally, the second mode processes #exural deformation of
foundation as I is small, and the natural frequency of this mode increases as
I increases. However, when I is large and the mode shape is a coupled rigid-body
motion, the natural frequency of this mode decreases as I increases.

The appropriate range of operating speeds is less than 25 Hz, or between 50 and
70 Hz, and the value of I is from 5]10~10 to 2]10~8 m4. For a high-speed
operation, a range between 100 and 200 Hz is acceptable disregarding the value
of I.

8. CASE STUDIES OF FOUNDATION DESIGN

Two rotor-bearing}foundation kits as shown in Figure 21 have been studied
through the modal analysis and the steady state analysis. A shaft with two or three
detachable disks is mounted on two deep-groove ball bearings. These rotor-bearing
systems are supported by a plate-type foundation. The overall structures are then
supported by a soft suspension whose sti!ness coe$cient is estimated as
8]105 N/m. Physical and material parameters of both kits are listed in Table 4.

Disks, bearings, and suspensions of both kits are modelled by a two-node
element as described by equations (2)} (4). The shaft is modelled by a beam element
which includes the gyroscopic e!ect, the transversal inertia, the rotary inertia, and
the shear deformation. The foundation is modelled by solid elements and the motor
is modelled by a lumped mass element.

In modal testing, the rotor and foundation are excited by an impacted hammer
and the responses are measured by using displacement sensors and accelerometers.
The transfer functions of the rotor-bearing}foundation system are determined by



Figure. 21. The rotor-bearing}foundation kits: (a) three-disk kit; (b) two-disk kit.

TABLE 4

Physical parameters of the rotor-bearing}foundation model in Figure 21

Bearings K
xx
"K

yy
"K

b
"0&109 N/m, others"0

Foundations E"7)0]1010 N/m2, o"2710 kg/m3, K
f
"8]105 N/m

length"0)79 m, width"0)154 m, thickness"0)025 m
Disk 1 md"0)334 kg, Id"1)36]10~4 kgm2, Jd"2)688]10~4 kgm2
Disk 2 md"0)782 kg, Id"4)31]10~4 kgm2, Jd"7)02]10~4 kgm2
Disk 3 md"0)412 kg, Id"1)525]10~4 kgm2, Jd"2)983]10~4 kgm2
Shaft E"2]1011 N/m2, I"4)909]10~10 m4, o"7850 kg/m3
Motor m"4)39 kg, I

xx
"1)389]10~2 kgm2, I

yy
"1)194]10~2 kgm2,

I
zz
"8)809]10~3 kgm2
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Figure. 22. Mode shapes of the kit as shown in Figure 21(a): (a) the "rst mode, (b) the second mode,
(c) the third mode, (d) the fourth mode, (e) the "fth mode, (f ) the sixth mode.
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means of a FFT analyzer (HP3566A). The spectra of frequency responses from
this transformation is generated and the natural frequencies of modes are
calculated. Also, mode shapes of both kits are obtained from adopting the SIMO
technique.



Figure. 23. Mode shapes of the kit as shown in Figure 21(b): (a) the "rst mode, (b) the second mode,
(c) the third mode, (d) the fourth mode, (e) the "fth mode, (f ) the sixth mode.
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Natural frequencies resulting from modal testing and analytical simulation in
these cases are listed in Table 5. From the comparison of data in this table, the
errors of natural frequencies are observed to be within 5%.

The mode shapes of both systems are shown in Figures 22 and 23. These "gures
illustrate the deformations of rotor and foundation, in which gray-level
distributions indicate the normalized displacements of the foundation.



TABLE 5

¹he comparison between analytical and experimental results of natural frequencies (Hz)

2-disk rotor 3-disk rotor

Mode Testing Simulation Error (%) Testing Simulation Error
(%)

1 39)57 41)14 3)97 36)49 37)65 3)18
2 118)95 119)15 0)17 120)66 118)23 2)01
3 133)23 134)87 1)23 142)69 145)58 2)03
4 218)81 224)75 2)71 217)38 227)30 5)00
5 488)03 465)84 4)55 543)62 554)15 1)92

Figure. 24. Campbell diagrams depicting experimental results (**) and simulating results (- - - -):
(a) three-disk kit; (b) two-disk kit.

ROTOR-BEARING-FOUNDATION 367



Figure. 25. Natural frequencies of the test kit with K
b
"109 N/m, K

f
"8]105 N/m: *s*, 1st

lateral mode (x) of rotor; *n*, 1st lateral mode (y) of rotor; *h*, 2nd lateral mode (x) of rotor;
*e*, 2nd lateral mode (y) of rotor;***, torsional mode of rotor; } }j} }, 1st mode of foundation;
} }m} }, 2nd mode of foundation; } }d} }, 3rd mode of foundation; } }.} }, 4th mode of foundation;
} }r} }, 5th mode of foundation.

Figure. 26. Natural frequencies of the test kit with K
b
"K

f
"109 N/m:*s*, 1st lateral mode (x)

of rotor;*n*, 1st lateral mode (y) of rotor;*h*, 2nd lateral mode (x) of rotor;*e*, 2nd lateral
mode (y) of rotor;***, torsional mode of rotor; } }j} }, 1st mode of foundation; } }m} }, 2nd mode
of foundation; } }d} }, 3rd mode of foundation; } }.} }, 4th mode of foundation; } }r} }, 5th mode of
foundation.
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Since that sti!ness of foundation structure of these kits is anisotropic, the natural
frequencies of forward and backward whirls do not arise from the same value at
zero speed as shown in Figure 24. These Campbell diagrams produced by the
analysis and the experiment of both kits have similar results.
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Natural frequencies versus foundation thickness are shown in Figure 25, in which
solid and dashed curves represent the modes of rotor and foundation respectively.
The "rst three modes of foundation are rigid-body motions, and the frequencies
decrease as thickness increases due to mass enlarging. Starting from the fourth
mode, the natural frequencies of the foundation increase as the thickness increases
due to the bending rigidity enlarging.
Figure. 27. Harmonic responses of the test kit with K
b
"K

f
"109 N/m: (a) disk 1; (b) disk 2.

*h*, spin speed 250 Hz; *s*, spin speed 200 Hz; *n*, spin speed 160 Hz; *.*, spin speed
130 Hz; *r*, spin speed 60 Hz; - - -j- - -, spin speed 30 Hz; *j*, spin speed 1 Hz.
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For plate-type foundation, the natural frequencies of rotor modes increase as
the plate thickness increases. When the thickness of foundation is appropriate, the
natural frequencies tend to be steady no matter how the thickness changes. The
natural frequencies r

1
"41)78 Hz, r

2
"145)75 Hz, r

3
"231)90 Hz are the "rst

three modes of rotor-bearing system located at rigid ground and the sti!ness
coe$cients of bearings are 109 N/m. Thus, the foundation is regarded as the rigid
support of the rotor-bearing system when the foundation thickness is above 4 mm.

In this example, the appropriate foundation thickness is 3 mm at 200 Hz
operating speed. Since the thickness is greater than 3 mm, there are six modes
during a speed range within 200 Hz. If the thickness is less than 2 mm, there are
eight modes within 200 Hz. When the operation speed is higher, the avoidance
of the fourth mode of foundation must be considered. Thus, a greater thickness of
foundation is required to raise the natural frequency of the fourth mode of
foundation.

The rigid-body motion modes of foundation can be avoided if the foundation is
mounted on a hard suspension, as shown in Figure 26. Also, this "gure indicates
that only one mode of foundation and three modes of rotor are within 400 Hz when
the foundation thickness is greater than 3 mm. It can be observed that the available
operating range is very wide. Thus, the natural frequencies of rotor are not
in#uenced by sti!ness coe$cients of suspension. However, the natural frequencies
of #exural modes of foundation increase as thickness increases. In Figures 25 and
26, the natural frequencies of rotor modes, which have similar mode shapes, are
almost equal.

Further, the e!ects of thickness on the unbalance responses at some spin
speeds are determined and shown in Figure 27. These speeds are 1, 30, 60, 130,
160, 200 and 250 Hz. When the foundation thickness is greater than 2 mm,
the increase in thickness has no e!ect on the reduction of the unbalance
responses.

9. CONCLUSION

This paper has extended the discussion on the foundation dynamics of the
rotor-bearing system, in which three foundation types are considered. They are the
lumped-mass foundation, the continuous-beam foundation, and the plate-type
foundation. The analytical results and suggestions for foundation design as
discussed in this paper can be summarized as follows:

1. When the suspension sti!ness is soft, an increase in foundation mass decreases
the natural frequencies of foundation modes. Thus, a hard suspension is
selected preferably to avoid the rigid-body motion of the foundation within
a given range of operating speed. For a hard suspension, an increase in
foundation size raises the natural frequencies of modes and enlarges the range
of operating speed.

2. For a soft structure of the foundation, the unbalance responses diminish and
the natural frequencies of the rotor increase as the size of the foundation
increases. When the structure of the foundation is sti! enough, the unbalance
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responses cannot be suppressed and the natural frequencies of the rotor also
cannot be raised as the size of the foundation increases. Hence, an appropriate
sti!ness of the foundation is acceptable.

3. An increase in a rotor's foundation size raises the natural frequencies of its
#exural modes. If the rotor is operated at a high speed, a larger size foundation
is needed to avoid #exural modes of itself in the operating range.
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APPENDIX A

The schematic diagram of a rotating disk is shown in Figure 2. The force and
moment equilibrium of the disk can be derived from
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where Fd
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are components of interactive force and

moment between a common node of shaft and disk.
Figure 3(a) shows a typical bearing model. By ignoring the length e!ect of the

bearing, the linearized equilibrium of a bearing element is derived as
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where Qb
xi

, Qb
yi

are interactive forces between the common node of shaft and bearing,
and Qb

xj
, Qb

yj
are interactive forces between the common node of bearing and

foundation.
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As shown in Figure 3(b), the force equilibrium of connectors between the
foundation and ground can be derived from
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where Qs
xi

, Qs
yi

are interactive forces between the common node of bearing and
foundation, and Qs

xj
, Qs

yj
are interactive forces between the common node of

foundation and ground.

APPENDIX B

As shown in Figure 4(b), the force equilibrium of the non-rotating support
element is
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at the shaft end, and
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at the foundation end. Thus,
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is obtained by substituting equation (B2) into the force equilibrium of the
foundation.

APPENDIX C: NOMENCLATURE

A displacement amplitude
E modulus of elasticity
F force
MFN the vector of external force
K sti!ness coe$cient
C damping coe$cient
[C], [G] damping, gyroscopic matrix
I the moment of area of foundation,
I
x
, I

y
, I

z
the moment of mass of disk with respect to x-, y-, and z axis

J the torsional moment of inertia of disk
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M moment
[M], [K] mass, sti!ness matrix
m, m

f
, m

r
mass, foundation mass, rotor mass

q generalized co-ordinates
MqN the vector of nodal displacements
Q interactive force
MQN the vector of interactive force
u nodal displacement
o density
h nodal rotation
u natural frequency
u

r
fundamental frequency of rotor-bearing system

X rotating speed

Superscript
b bearing
d disk
e shaft
f foundation
g ground
r rotor
s suspension

Subscript
a all of the interior d.o.f. of rotor-bearing system
b the interior d.o.f. between bearing and foundation
c the interior d.o.f. of foundations
f foundation
g unidirectional load
i the node of rotating support element
s suspension
u unbalance forces
x, y, z co-ordinates axes
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